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Observations of the cavity produced by a droplet of rain falling on a plane water 
surface show that the cavity often takes the form of an inverted cone. In  the present 
paper we discuss a simple analytic expression for the corresponding fluid flow. 

The main source of rain noise has been found to occur when the flow entrains an 
air bubble a t  the vertex of the cone. In  this paper we show that the magnitude of the 
sound produced by the fluid flow in the present model is consistent with observation. 

1. Introduction 
Striking progress has recently been made in understanding the spectrum of 

underwater sound due to rain. Extending the earlier studies by Wenz (1962) and 
others to frequencies above 10 kHz, Scrimger (1985) and Nystuen (1986) found a 
characteristic peak in the spectrum a t  about 15 kHz, a result well confirmed by the 
recent work of Scrimger et al. (1987, 1989) and by Pumphrey, Crum & Bjorno (1989). 
A t  the same time, laboratory experiments by Pumphrey & Crum (1988, 1989) on the 
vertical impact of water droplets on a plain water surface have demonstrated that 
most of the sound arises not from the initial impact itself but from bubbles entrained 
near the bottom of the resulting surface cavity. For any given initial drop size, such 
‘regular entrainment ’ occurs only rather exceptionally, namely when the impact 
velocity lies in a certain narrow range. These observations have been beautifully 
confirmed by the numerical calculations of Oguz & Prosperetti ( 1 9 8 9 ~ ) ;  see also 
Prosperetti, Crum & Pumphrey (1989). 

Intriguingly, the surface profile of the impact cavity (according to both laboratory 
experiments and numerical calculations) often assumes the form of an inverted cone ; 
see figures 1 to 5 below. In figure 1, for example, a bubble is ultimately enclosed. In  
figure 2 (a), a bubble is also formed, but in figures 2 (b )  and 2 (c) the impact velocity 
was too high. Similarly in figure 3 the velocity was too low to enclose a bubble, but 
in figures 4 and 5 a bubble is again enclosed. In  each case the outer surface of the 
bubble cavity is roughly conical. It therefore seems worthwhile to inquire whether 
there are any simple flows, given analytically, in which the profile can assume a 
conical form ; and if so, whether such a model can be used to make a direct estimate 
of the resulting emitted sound. 

In  $ 3 2 4  of this paper we treat the outer part of the cavity, where surface tension 
may be negligible, and show that there is indeed such a simple flow. In  fact it is one 
of a class of hyperbolic flows found previously, which describe the jets formed by the 
disintegration of a bubble film (see Longuet-Higgins 1983). Analytically, it is a 
simple, linear shear, described by a spherical harmonic of degree 2. The time 
dependence develops a singularity at the instant when the vertex angle of the conical 
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FIGURE 1. Axial section of the cavity from a drop of radius R = 1.9 mm and impact velocity U = 
1.53 m/s. The times indicated are in the dimensionless units R/U (after Oguz & Prosperetti 1989~).  

(4 (b) (4 
t' = 21.7 33.8 48.2 

21.8 35.0 53.5 

FIGURE 2. As figure I ,  with R = 1.75 mm: (a) U = 1.5 m/s; ( b )  U = 2.0 m/s; (c) U = 2.5 m/s. 
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FIQURE 3. As figure 1, with R = 1 mm, U = 1.75 m/s. 
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FIQURE 4. As figure 1, with R = 1 mm, U = 2:O m/s. 
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t* = 30.8 I 

1 32.5 /I 

I 34.3 I 

I 35.9 I 

FIQURE 5. As figure 1 ,  with R = 1 mm, U = 2.4 m/s. 

boundary passes through the critical angle 109.5'. Comparison with the experimental 
data shows some agreement with the observed vertex angle. Moreover, the time 
dependence of the vertex angle appears to behave in the manner predicted. 

In  $ 5  it is shown that surface tension may be included by placing at  the vertex of 
the cone a simple sink, whose strength varies linearly with the time. 

The development of the bubble cavity, which arises from a circular ripple 
converging on the vertex, is discussed in $6. I n  $ 7  we calculate the strength of the 
sound pulse, and conclusions follow in $8. 

2. Equations for the outer cavity 
Since the wavelength of sound is large compared with the lengthscale of the 

cavity, we assume the motion to be incompressible. Further, since there is little time 
for the diffusion of vorticity, the motion is assumed irrotational. Hence there is a 
velocity potential q5 satisfying 

in the interior. Taking the density as unity, we have also the Bernoulli equation 

vq5 = 0 (2.1) 

p+;(V#)2+gz+$, = 0, 12.2) 
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where z is a vertical coordinate, measured upwards and g denotes gravity. Because 
of the large particle accelerations involved (of order lo4 cm/sz or more) we may take 
g = 0. Hence 

In  the outer part of the cavity we shall ignore surface tension, so that the dynamical 
boundary condition is simply 

To this we must joint the kinematic boundary condition, expressible as 

12-31 

(2.4) 

p = -$t-;(V$)? 

p = 0. 

3. A simple instantaneous flow 
Axisymmetric solutions to Laplace's equation (2.1) exist in the form 

$ = ArnPn(cosO), (3.1) 

where r and 8 are spherical coordinates as shown in figure 6, and A is a function of 
the time t only. In particular when n = 2 and A(t)  = t we have 

$ = $tr2(3 cos2 8- 1). (3.2) 

p = -$r2(3~0s2B-1) (3.3) 

At time t = 0 it is clear that V$ vanishes and so by (2.3) 

which vanishes when cos28 = $, that is 

e = arccos 3-f = 54.70 = ec (3.4) 

say, hence the instantaneous free surface is a cone with vertex angle 

2yc = 109.5" (3.5) 

4. An exact conical flow 
The simple flow given by (3.2) does not satisfy the boundary condition (2.4) a t  

times other than t = 0, nor does it generally satisfy the condition (2.5). At times 
t $: 0, further terms must be included in the solution, and the free surface will no 
longer be conical. 

Remarkably, however, there does exist an exact, axisymmetric solution to the 
boundary condition (2.6) and (2.5) having the form 

$ = &4(t)r2(3cos2B-i) (4.1) 

and in which the free surface is always a cone. This solution is in fact a special case 
of one of the hyperbolic flows discussed by the author in an earlier paper (Longuet- 
Higgins 1983). 

Note first that when expressed in terms of Cartesian coordinates (x, y, 2) with the 
origin a t  the vertex and x vertically upwards, (4.1) becomes 

= $4(222-x2-y2). (4.2) 

The velocity vector V$ = A( -2, -y, 22) (4.3) 

depends linearly on x, y and z. Hence any material particles lying in a straight line 
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X 

0 
FIQCJRE 6. Definition of coordinates. 

0 

FIQURE 7. A cross-section of the flow (4.1). 

remain always in a straight line, although the direction of the line generally varies 
in time. Thus, particles on the surface of a cone remain always on the surface of a 
cone, although the vertex angle 2y depends on the time t (see figure 7). 

Figure 7 shows how the trajectory of a typical particle always curves away from 
the axis of symmetry. To produce such a curvature there must clearly be a 
component of the pressure gradient normal to the trajectory. Consider then a typical 
point P on the free surface. Since the component of the pressure gradient parallel to 
the free surface vanishes, the gradient is always normal to the surface. At a general 
angle, the pressure gradient can supply a component of force normal to the 
trajectory, but at a certain critical angle this becomes impossible, namely when 

or from (4.3) 
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hence 3cos2e-i = 0. (4.6) 

This makes the vertex angle of the cone 109.5' as before. At this critical angle, if the 
free surface is to remain conical, the flow must have a singularity in time. Physically, 
it  appears difficult to force the flow past the critical configuration. 

Does this fit the observations? In figures 1 to 5 we have drawn straight lines 
approximately tangent to the free surface in the outer part of each cavity. Thus in 
figure 1 the vertex angle is stationary a t  around 118'. In  figure 2 the maximum 
angles are 113", 126" and 118", only the first one forming a bubble. In figures 3 ,4  and 
5 the maximum angles are 109.5", 105" and 103'. The mean value of all these angles 
is 113'. The agreement with equation (4.6) is encouraging. 

A derivation of the actual time dependence is given in Longuet-Higgins (1983). It 
is found that A ( t )  can be expressed in the form 

where A is given in terms of the time t by the elliptic integral 

to being an arbitrary constant. The pressure p is given by 

x 
p = - [A3(X2 + y2 - 222)]. 

4h 

Thus the free surface p = 0 is a cone with semi-vertex angle 

y = arctan (2/~3)+.  

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The time dependence of y is shown in figure 8. The singularity when A = 1, 2y = 
109.5") can be seen. 

Close to the critical time t = 0, which corresponds to h = 1, we find from (4.9) that 

3f t 
h x l + 7 f ,  7=- - -  

2 to' 
(4.11) 

so that the velocity field, which is proportional to i / h ,  becomes weakly infinite like 
It[-$, and the pressure field becomes infinite like 1tl-f. Near t = 0 we find from (4.10) 
and (4.11) that 

t a n y  x 2+(i -9;). (4.12) 

Hence, the departure 

A y  = arctan 2i- y (4.13) 

of the vertex angle from its limiting value is proportional to It:[. 
In  figure 9 we have plotted (2Ay)i against the dimensionless time 7. The full curve is 

taken from the calculated values in table 1 -of Longuet-Higgins (1983). The broken 
line corresponds to the 7; asymptote. The gradient of the line is 3i/2i = 1.456. 

To test this time-dependence we measured the vertex angles 2y  from figure 4 above 
(Oguz & Prosperetti 1989a, figure 11 c ) . t  Some intermediate surface profiles with 

f The angles were determined by tangents such that each touched the outer part of the profile, 
and divided the line joining the maximum and minimum nearest the axis of symmetry in the ratio 
5:2; see $6 below. 



402 M .  S. Longuet-Higgim 
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FIGURE 8. Time-dependence of the vertex angle 2y in the flow (4.1). 

7 

more accurate timing were very kindly supplied by Dr H. Oguz. In figure 10 we have 
plotted (2Ay)g versus the dimensionless time t* used by Oguz & Prosperetti, and it will 
be seen that the observed points follow the theoretical curve rather well. The 
intercept of the line with the horizontal axis a t  t* = 23.45 may be taken as the origin 
of time for the conical flow. 

A second example, which corresponds more closely to a typical raindrop at  
terminal velocity, is illustrated in figure 11. The corresponding analysis of Ay is 
shown in figure 12. Again the plotted points lie well along the theoretical curve. 

5. Surface tension 

to reduce the pressure p in the fluid just inside the boundary by an amount 
So far we have ignored surface tension. Generally, the effect of surface tension is 

(5.1) 

where K~ and K~ denote the principal curvatures. In  the case of a cone with vertex 

(5.2) 

angle 2y we have 

p’ = - T ( K ~  -t K ~ )  

1 
r 

K1 = 0, K 2  = -cot y ,  

r being the radial distance, and the pressure just inside the boundary must therefore 
be Tcoty 

r 
p = - - *  (5.3) 

When the velocity is &all, this is precisely the pressure field induced by a sink 
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1 

7 

FIGURE 9. Graph showing the behaviour of the vertex angle 2y in the neighbourhood of the critical 
instant t = 0. Full curve represents (2Ay)t ,  from calculated values in table 1 of Longuet-Higgins 
(1983). Broken line represents linear asymptote. 

where p denotes the density, provided that 

df - = cot y. 
dt 

From (4.6) we have 
1 
23 

coty = ?+0(4), 

hence 

(5 .5)  

(5.7) 

We can imagine this sink placed in the cavity that appears, experimentally, near the 
vertex of the cone, just before the bubble breaks away. 

The solution combining both (4.1) and (5.7) does not in fact satisfy the boundary 
condition exactly, on account of the nonlinearity of the pressure condition. 
Nevertheless it may describe approximately the actual velocity field. 
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t* 

FIQURE 10. A plot of (2Ay)g versus the dimensionless time t* corresponding to figure 3 (Oguz & 
Prosperetti 1989~).  figure 11 c), U = 1.75 m/s, R = 1 mm. 

6. Development of the bubble cavity 
In both the experiments and numerical computations the cavity at the vertex 

seems to arise out of a ripple on the surface of the cone converging towards the axis 
of symmetry. This convergent ripple may be considered as a perturbation of the 
conical flow on a relatively small (capillary) lengthscale. Qualitatively, the behaviour 
of the ‘ripple ’ will not differ grea4ly from the inward propagation of a circular ripple 
on a plane water surface. Accordingly near the time of arrival of the ripple energy a t  
the axis of symmetry, the surface displacement r] will be described roughly by the 
Bessel function J,: 

7 oc JO(kT)eict, cr2 = ( T / p ) k 3 ,  (6.1) 

where k is a local wavenumber. We note that the ratio of the first maximum of J, 
(JJO) = 1) to the adjacent minima (-0.40) is about -5:2.  This is comparable with 
the corresponding displacements seen in figures 1-5 above. 

This representation of the surface disturbance as a ripple with a sharp frequency 
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1 47.183 /I 48.867 n 

1 50.508 52.021 I 

53.264 1 54.091 

FIGURE 11. As figure 1, in the case of a typical raindrop : R = 0.4375 mm, U = 3.565 mfs. 

Q and wavenumber k is of course an idealization. A closer representation would be as 
a pulse of finite bandwidth, that is 

q ( r , t , l )  = ~*~P(k,r)J,(kr)eiU"dk, (6.2) 

where f is  a slow time and F is appreciably large only in a narrow range Ak(t) of 
wavenumber. If, at time t = 0, q has a 'wave trough' at  r = 0, i.e. a minimum, then 
a bubble may develop. If on the other hand 9 has a maximum there, an upwards jet 
will more probably emerge. 

Note that nonlinearity will produce a qualitative difference between crests and 
troughs of the standing wave. Although nonlinear effects on progressive capillary 
waves are well-known (see Crapper 1957; Longuet-Higgins 1988) and result in a 
rounding of the wave crests relative to the wave troughs, the corresponding effects 
for standing waves have still to be determined (for a partial investigation, see 
Vanden-Broeck 1984). We may, however, expect that the surface slope in a standing 
capillary wave will become quite steep, even overhanging, before breaking occurs. 
Thus a nonlinear standing capillary wave at  the point of breaking may correspond 
to a flow not unlike that in a fluid sink, as described above. 
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FIGURE 12. A plot of (2Ay)t versus the dimensionless time t* corresponding to figure 1 1 .  

7. Emission of sound 
Typical pulses of sound emitted by the regular entrainment of bubbles are shown 

by Pumphrey et al. (1989, figure 3), or Pumphrey & Crum (1989, figure 15). The sound 
field has the form of a dipole, falling off with distance like r-l in most directions 
(Pumphrey & Crum, figures 19 and 20). Such an acoustic field would be expected 
from a bubble oscillating as a monopole, but close to a pressure-release surface. At 
a distance r = 1 m vertically below a closed bubble, the initial amplitude of the 
acoustic pressure pulse as measured by Pumphrey & Crum (1989) is about 1 Pa, a t  
a frequency of 8 kHz (their figure 19). At 14 kHz it  is about 0.4 Pa. 

Radial oscillations of a bubble may be stimulated in various ways: 
1. By the closure pressure due to surface tension. The initial pressure is of order 

2T/a, where a is the mean bubble radius. Hence i t  will produce pressure oscillations 
of order 2T/r a t  a distance r from the bubble. 

2 .  By ‘shape oscillations’ of the bubble, resulting from its initial distortion into a 
highly non-spherical shape. It has been shown that these give rise to a monopole 
radiation of sound having twice the fundamental frequency g,, of the shape 
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oscillation. The pressure amplitude is of order 2e2T/r, where E is a distortion 
parameter, of order 1 (see Longuet-Higgins 1989u, b ,  c). 

3. By the initial inwards momentum of the surrounding fluid a t  the time of 
closure. This will produce pressure oscillations with amplitude of order pwQu2/r, 
where w is the radian frequency of the breathing mode and Q the mean radial velocity 
at the surface of the bubble. 

4. By spherical asymmetry in the velocity field. This will set up shape oscillations, 
and so generate second-order monopole pulsations in a similar way to (2). 

With regard to (2) and (4) we note that near certain frequencies (calculated in 
Longuet-Higgins 1989d) the shape oscillations tend to resonate with the breathing- 
mode frequency w ,  so as to produce an enhanced monopole emission of sound. Hence 
the estimates of the acoustic pressure may be increased by a factor 2 or more. 

All of the above estimates are for bubbles in an unbounded fluid. When the bubble 
is close to a plane pressure-release surface, the far-field radiation will be in the form 
of a dipole, but decreased in amplitude by a factor S of order Zhwlc, where h is the 
distance of the bubble from the surface, w is the radian frequency and c the speed of 
sound. For example, if we take h = 3 mm, 0/2n = 8 kHz and c = 1.5 x lo5 cm/s, then 
S is about 0.2. 

If the surface is not perfectly plane, but has an axisymmetric indentation, as is 
observed, then it may be shown (see Longuet-Higgins 1989d; Oguz & Prosperetti 
1989b) that  the far field is still asymptotically a dipole, but that the amplitude is 
increased by a factor of order 3, if h now denotes the distance of the bubble below 
the lower point of the indentation. Hence 6 may be taken to be about 0.6. With a 
higher frequency, say w/2n = 14 kHz, 6 is about 1. 

Consider first the bubble-closure mechanism (1) .  With T = 74 dyne/cm, and 
r = 1 m we find for the dipole moment rp :  

(7 .1)  

This is less than the observed value by a factor of order 3. 
Next, the initial-distortion mechanism (2) will produce an effect of magnitude e2 

times that due to (1) .  Taking e to be as great as 1 ,  we see that the moment is a t  most 
of order 

which is again less than the amplitude observed. 
Consider now the mechanisms (3) and (4), which depend upon the initial velocity 

u near the bubble In  this paper we have considered two velocity fields in particular. 
(a )  The hyperbolic flow (4.1). In  this the radial velocity u a t  the bubble is given 

(7.3) 

which is like a dipole. If we take account only of the part of the flow lying beneath 
the conical boundary B = Bc then we find 

rlpl = 2T = 0.15 N/m. 

rip( = 2e2T = 0.15 N/m. (7.2) 

u = A(t )  a(3 cos2 B- 1) ,  by 

1 

(7.4) 
1 

a = @ ( t ) u  (3p2-1)dp = 1: 3 5  

Now from (4.7) and (4.11) we have, when 7 4 1, 

1 1  
(64,); &' 

A=--- (7.5) 

Here to denotes the timescale in (4.8) and (4.11), and t is the time at bubble closure. 
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Comparing the timescales in figures 9 and 12, we see that 
We evaluate the above expressions for the raindrop example in figure 11.  

- 25.5. 
dt* 
dr  
_ -  

In figure 12 the timescale is given by 

dt 
dt t, = = R / U  = 0.123 x 10-3 s. 

- 2.72 x 10-3 s. to = -- - 31 dt 
2 d r  

So from (4.11) 

(7.7) 

The instant t of bubble closure can be found by extrapolating the measured width W 
of the neck of the bubble; see figure 1. We find that W vanishes when t* = 54.32, The 
time-difference between this and the intercept in figure 12 is 

t = (54.32 -55.02) t, = -0.086 x s. (7.9) 
From the observed frequency (14 kHz) we deduce a mean bubble radius a of about 
0.02 cm. Altogether from (7.4) to (7.9) we find 

Hence pwlula2/r = 5.3 Pa. 

(7.10) 

(7.11) 

This result depends only weakly on the assumed value of t in (7.10). 

curvature of the cone. From (5.7) we have 
(b )  The second flow considered earlier was the source (5.7) associated with the 

T 
r(p( = Tcoty = -, (7.12) 

that is rlpl = 0.052N/m, (7.13) 

which is an order of magnitude less than the contribution (7.11). 
Since t < 0, it follows that the source (5.7) represents a flow inwards towards the 

centre. This is in the same sense as the resultant velocity ti in the flow (a), so that the 
two effects tend to reinforce, not cancel each other. Together, they would appear to 
account largely for the observed pressure. 

Because of the asymmetry of the flow (a), combined with the shape of the 
boundary, there will be a tendency for both flows (a) and (b )  to excite shape 
oscillations of the bubble. However, since the distortion parameter 8 can never 
exceed a certain value, of order 2, say, the sound emitted in this way cannot much 
exceed that given by equation (7.2). We note that there is some slight evidence in 
figure 22 from Pumphrey & Crum (1989) of increased emission at around the resonant 
frequencies 17, 27 and 47 kHz, estimated by Longuet-Higgins (1990). 

4 2  

8. Conclusions 
We have shown that the conical profile often assumed by raindrop cavities may be 

associated with the simple flow (4.1) in which the time factor A(t )  is given by (4.8). 
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Such a flow develops a weak singularity near the time ( t  = 0) at which the vertex 
angle of the cone is 109.5’. The physical reason, as suggested in $4, is that the flow 
has to be forced through this configuration, and so there occurs a weak ‘shock’, when 
A(t )  K t-i. The time dependence of the flow near this instant is confirmed by 
observation. 

Surface tension can be partly accounted for by introducing a time-dependent sink 
at the vertex of the cone: equation (5.7). This is made possible because in practice 
the vertex is surrounded by a small cavity in the free surface, which in turn is created 
by the convergence of a circular ripple towards the vertex. 

The sound field from the bubble can be well accounted for by the inward radial 
momentum arising from these flows a t  the moment of bubble closure. The sound 
pulse generated by the closure itself appears to be somewhat smaller, as also is the 
pulse arising from the shape oscillations. The latter is probably only a small though 
perceptible part of the pulse produced by the initial inwards momentum, even a t  
resonance. This may account for the slight indications of resonance seen in the data 
of Crum & Pumphrey (1989). 

I am indebted to Professor A. Prosperetti and Dr H. Oguz for sending me a copy 
of their (1989) manuscript, from which some of the data in this paper were drawn, 
and to Dr Oguz for kindly supplying further details of his numerical calculations. The 
present work was supported under ONR Contract N00014-88C-0563. 
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